
Sofic-Dyck shifts

Marie-Pierre Béal, Michel Blockelet

and Cătălin Dima

Université Paris-Est
Laboratoire d’informatique Gaspard-Monge UMR 8049
Laboratoire d’algorithmique, complexité et logique

EQINOCS Meeting, January 2014

Overview

Sofic-Dyck shifts : definition and characterization

Zeta function

Finite-type Dyck shifts, edge-Dyck shifts

Decomposition theorem of edge-Dyck shifts

Future work

Shifts of sequences of symbols over a finite alphabet

Definition

A subshift of sequences over A is the set of bi-infinite sequences XF of
symbols in A avoiding a given set F of finite blocks.

A = {a, b}, F = {aa}

· · · ababbbabab · abababbbbabbaba · · ·

Examples

1

([

)]

The Dyck shift

Matched edges

1
(−→ 1 is matched with 1

)−→ 1

1
[−→ 1 is matched with 1

]−→ 1
Allowed sequence : · · · [(())] [[(· · ·
Forbidden blocks : (], [), (()], · · ·

Examples

1

(
[

)
]

i

The Motzkin shift

Matched edges

1
(−→ 1 is matched with 1

)−→ 1

1
[−→ 1 is matched with 1

]−→ 1
Allowed sequence : · · · [i i(())] i [i i i] [(· · ·
Forbidden blocks : (], (i i], · · ·

Examples

1 2

(

[

)

]

i

i

The even-Motzkin shift

Matched edges

1
(−→ 1 is matched with 1

)−→ 1

1
[−→ 1 is matched with 1

]−→ 1
Allowed sequence :· · · i ([i i] i i) ((· · ·
Forbidden sequence : · · · i ([i] i i) · · ·

Sofic-Dyck shifts

Shifts of sequences over a pushdown alphabet A which is the disjoint
union of (Ac ,Ar ,Ai) :
Ac is the set of call alphabet
Ar is the set of return alphabet
Ai is the set of internal alphabet

A Dyck automaton (A,M) over A is a directed labelled graph
A = (Q,E ,A) where E ⊂ Q × A× Q
M is the set of matched edges : a set of pairs ((p, a, q), (r , b, s)) of
edges of A with a ∈ Ac and b ∈ Ar

equipped with a graph semigroup S generated by the set
E ∪ {xpq | p, q ∈ Q} ∪ {0} with

Sofic-Dyck shifts

E ∪ {xpq | p, q ∈ Q} ∪ {0}

0s = s0 = 0 for s ∈ S ,

xpqxqr = xpr for p, q, r ∈ Q,

xpqxrs = 0 for p, q, r , s ∈ Q, q 6= r ,

(p, ℓ, q) = xpq for p, q,∈ Q, ℓ ∈ Ai ,

(p, a, q)xqr (r , b, s) = xps for ((p, a, q), (r , b, s)) ∈ M,

(p, a, q)xqr (r , b, s) = 0 for ((p, a, q), (r , b, s)) /∈ M,

(p, a, q)(r , b, s) = 0, for p, q, r , s ∈ Q, q 6= r , a, b ∈ A,

xpp(p, a, q) = (p, a, q) = (p, a, q)xqq for p, q ∈ Q, a ∈ A,

xpq(r , a, s) = 0 = (r , a, s)xtu for p, q ∈ Q, a ∈ A, q 6= r , s 6= t.

Sofic-Dyck shifts

If π is a finite path, f (π) is its image in the graph semigroup S
A finite path is admissible if f (π) 6= 0
A bi-infinite path is admissible if all its factors are admissible.
A word labeling an admissible path π such that f (π) = xpq is a Dyck
word or a well-matched word.
A bi-infinite sequence is accepted by (A,M) if it is the label of a
bi-infinite admissible path of (A,M).

A sofic-Dyck shift is a set of bi-infinite sequences accepted by a Dyck
automaton.

Related classes of symbolic dynamical systems

Dyck shifts, Krieger et al.
Markov-Dyck shifts, Krieger and Matsumoto
Extensions of Markov-Dyck shifts, Inoue and Krieger
Shifts presented by R-graphs, Krieger
Coded systems, Blanchard and Hansel

Visibly pushdown shifts

Proposition

The set of allowed blocks of a sofic-Dyck shift is a visibly pushdown
language. Conversely, if L is a factorial extensible visibly pushdown
language, then the shift of sequences whose factors belong to L is a
sofic-Dyck shift.

It is not difficult to prove that the set of labels of finite admissible
paths is a visibly pushdown language.

It is more complicate to prove that it holds also for the set of (allowed)
blocks. Indeed, labels of finite admissible paths may not be blocks.
Culik and Yu showed that the subset of bi-extensible words of a
context-free language may not be context-free. It is true for factorial
languages. We adapt the construction for the visibly pushdown case.

Visibly pushdown automaton

M = (Q, I , Γ,∆,F)

Q is the finite state of states

A = (Ac ,Ar ,Ai) is the partitioned alphabet

Γ is the stack alphabet

∆ ⊂

Q × Ac × Q × (Γ \ {⊥})
Q × Ar × (Γ \ {⊥})× Q

Q × Ai × Q

(p, ℓ, q) ∈ ∆ p,

α
...
β
⊥

Visibly pushdown automaton

M = (Q, I , Γ,∆,F)

Q is the finite state of states

A = (Ac ,Ar ,Ai) is the partitioned alphabet

Γ is the stack alphabet

∆ ⊂

Q × Ac × Q × (Γ \ {⊥})
Q × Ar × (Γ \ {⊥})× Q

Q × Ai × Q

(p, ℓ, q) ∈ ∆ p,

α
...
β
⊥

ℓ−−−→ q,

α
...
β
⊥

Visibly pushdown automaton

M = (Q, I , Γ,∆,F)

Q is the finite state of states

A = (Ac ,Ar ,Ai) is the partitioned alphabet

Γ is the stack alphabet

∆ ⊂

Q × Ac × Q × (Γ \ {⊥})
Q × Ar × (Γ \ {⊥})× Q

Q × Ai × Q

(p, a, q, α) ∈ ∆ p,

α
...
β
⊥

Visibly pushdown automaton

M = (Q, I , Γ,∆,F)

Q is the finite state of states

A = (Ac ,Ar ,Ai) is the partitioned alphabet

Γ is the stack alphabet

∆ ⊂

Q × Ac × Q × (Γ \ {⊥})
Q × Ar × (Γ \ {⊥})× Q

Q × Ai × Q

(p, a, q, α) ∈ ∆ p,

α
...
β
⊥

a−−−→ q,

α
α
...
β
⊥

Visibly pushdown automaton

M = (Q, I , Γ,∆,F)

Q is the finite state of states

A = (Ac ,Ar ,Ai) is the partitioned alphabet

Γ is the stack alphabet

∆ ⊂

Q × Ac × Q × (Γ \ {⊥})
Q × Ar × (Γ \ {⊥})× Q

Q × Ai × Q

(p, b, α, q) ∈ ∆ p,

α
...
β
⊥

Visibly pushdown automaton

M = (Q, I , Γ,∆,F)

Q is the finite state of states

A = (Ac ,Ar ,Ai) is the partitioned alphabet

Γ is the stack alphabet

∆ ⊂

Q × Ac × Q × (Γ \ {⊥})
Q × Ar × (Γ \ {⊥})× Q

Q × Ai × Q

(p, b, α, q) ∈ ∆ p,

α
...
β
⊥

b−−−→ q,
...
β
⊥

Visibly pushdown grammar

Visibly pushdown languages are generated by visibly pushdown
grammars G = (V , S ,P) over A.
The set V of variables is partitioned into two disjoint sets V 0 and V 1.
V 0 derive only well-matched words
V 0 derive not well-matched words

X → ε ;

X → aY , such that if X ∈ V 0, then a ∈ Ai and Y ∈ V 0 ;

X → aY bZ , such that a ∈ Ac , b ∈ Ar , Y ∈ V 0, and if X ∈ V 0,
then Z ∈ V 0.

Finite-type-Dyck shifts

Finite-type-Dyck shift are accepted by local (or definite) Dyck
automata.

We says that (A,M) is (m, a)-local if whenever two paths (or two
admissible paths) (pi , ai , pi+1)−m≤i≤a, (qi , ai , qi+1)−m≤i≤a, of A of
length m + a have the same label, then p0 = q0.

sofic shifts

sofic-Dyck shifts

SFT

FT-Dyck

Zeta function for sofic-Dyck shifts

Let X be a sofic-Dyck shift presented by a deterministic (or
unambiguous) Dyck automaton.
Denoting by pn the number of points of X of period n, the zeta
function of X is defined as

ζX (z) = exp
∑

n>0

pn
n
zn.

Zeta function for
shifts of finite type, Bowen, Lanford
sofic shifts, Manning, Bowen
with N-rationality, Berstel and Reutenauer
Dyck shifts, Keller
Motzkin shifts, Inoue
Markov-Dyck shifts, Krieger and Matsumoto
· · ·
The computation combines technique from Bowen, Keller, Krieger and
Matsumoto

Zeta function for sofic-Dyck shifts

Let (A,M) be a Dyck automaton.
C = (Cpq), where Cpq is the set of prime well-matched blocks labeling
a path from p to q.
Mc = (Mc,pq), (resp. Mr) where Mc,pq is the sum of call (resp. return)
letters a labeling an edge from p to q (shifts Zc and Zr)
Cc (resp. Cr) is the matrix CM∗

c (resp. the matrix Mr
∗C).

A⊗ℓ is the labelled graph with states Q⊗ℓ, the set of all subsets of Q
having ℓ elements.
P = (p1, . . . , pℓ)

a−→ P ′ = (p′1, . . . , p
′
ℓ),

if and only if there are edges labelled by a from pi to qi and
(q1, . . . , qℓ) is an even permutation of P ′.

Zeta function for sofic-Dyck shifts

Let (A,M) be a Dyck automaton.
C = (Cpq), where Cpq is the set of prime well-matched blocks labeling
a path from p to q.
Mc = (Mc,pq), (resp. Mr) where Mc,pq is the sum of call (resp. return)
letters a labeling an edge from p to q (shifts Zc and Zr)
Cc (resp. Cr) is the matrix CM∗

c (resp. the matrix Mr
∗C).

A⊗ℓ is the labelled graph with states Q⊗ℓ, the set of all subsets of Q
having ℓ elements.

P = (p1, . . . , pℓ)
−a−−→ P ′ = (p′1, . . . , p

′
ℓ),

if and only if there are edges labelled by a from pi to qi and
(q1, . . . , qℓ) is an odd permutation of P ′.

Zeta function for sofic-Dyck shifts

Proposition

The zeta function of a sofic-Dyck shift accepted by a Dyck automaton
(A,M) with matrices C ,Cc ,Cr ,Mc ,Mr is given by the following
formula.

ζX (z) =
ζXCc

(z)ζXCr
(z)ζZc

(z)ζZr
(z)

ζXC
(z)

,

=

|Q|
∏

ℓ=1

det(I − Cc,⊗ℓ(z))
(−1)ℓ det(I − Cr ,⊗ℓ(z))

(−1)ℓ

det(I −Mc,⊗ℓ(z))
(−1)ℓ det(I −Mr ,⊗ℓ(z))

(−1)ℓ det(I − C⊗ℓ(z))
(−1)ℓ+1.

Example

Let X accepted by (A,M) over A = ({(, [}, {),]}, {i})
Matched edges : (1

(−→ 1, 1
)−→ 1),(1

[−→ 1, 1
]−→ 1).

1 2

(

[

)

]

i

i

1, 2

−i

C =

[

C11 C12

C21 C22

]

, =

[

(D11) + [D11], i
i 0

]

, C⊗2 =
[

C(1,2),(1,2)

]

=
[

−i
]

where D11 = (D11) D11 + [D11] D11 + i i D11 + ε.

Example

Cc = CMc
∗ =

[

C11 i
i 0

] [

{(, [}∗ 0
0 ε

]

=

[

C11{(, [}∗ i
i{(, [}∗ 0

]

,

Cr = Mr
∗C =

[

{),]}∗ 0
0 ε

] [

C11 i
i 0

]

=

[

{),]}∗C11 {),]}∗i
i 0

]

.

2
∏

ℓ=1

det(I −Mc,⊗ℓ(z))
(−1)ℓ =

2
∏

ℓ=1

det(I −Mr ,⊗ℓ(z))
(−1)ℓ =

1

1− 2z
.

Example

We finally get

ζX (z) =
(1 + z)(1− z2 − C11(z))

(1− 2z − z2 − C11(z))2
,

=
(1 + z)(1− z2 − 1−z2−

√
1−10z2+z4

2)

(1− 2z − z2 − 1−z2−
√
1−10z2+z4

2)2
.

The entropy of the shift is

h(X) = log
1

ρ
= log

2√
13− 3

∼ log 3.3027.

N-algebracity of zeta functions

Proposition

The zeta function of a finite-type-Dyck shift is a computable
N-algebraic series, i.e. is the generating series of some unambiguous
context-free language

We conjecture that the result holds for all sofic-Dyck shifts.

Proper block map

A map Φ : X → Y is called an (m, a)-local map (or an (m, a)-block
map) if there exists a function φ : Bm+a+1(X)→ B such that
Φ(x)i = φ(xi−m · · · xi−1xixi+1 · · · xi+a).

A block map Φ : XA → XA′ , where A = (Ac ,Ar , Ai) and
A′ = (A′

c ,A
′
r ,A

′
i), is proper if Φ(x)j ∈ A′

c (resp. A′
r , A

′
i) whenever

xj ∈ Ac (resp. Ar , Ai) for any j .

Proper conjugacy : conjugacy which is a proper block map.

Finite-type-Dyck shifts

Proposition

A subshift is a sofic-Dyck shift if and only it is the proper factor of a
finite-type-Dyck shift.

Corollary

A proper factor of a sofic-Dyck shift is a sofic-Dyck shift.

In-split of a Dyck automaton

(A = (Q,E ,A),M) over A = (Ac ,Ar ,Ai)
Let p ∈ Q and P a partition (P1, . . . ,Pk) of the edges coming in p.
(A′ = (Q ′,E ′,A),M ′) is defined by

Q ′ = Q \ {p} ∪ {p1, . . . , pk},
(q, a, r) ∈ E ′ if q, r 6= p and (p, a, r) ∈ E ,

(q, a, pi) ∈ E ′ for each i such that (q, a, p) ∈ Pi ,
(pi , a, r) ∈ E ′ for each i such that (p, a, r) ∈ E .

M ′ is the set of pairs of edges (q, a, r), (s, b, t) where
a ∈ Ar , b ∈ Ac such that (π(q), a, π(r)), (π(s), b, π(t)) ∈ M where
π(q) = q for q 6= p and π(pi) = p.

Example

A Dyck state-splitting of the state 1 into 1′ and 1”.

1

263

45

āb̄

ab

i

1′ 1′′

263

45

ā
b̄ ā

b̄

ab

i i

Trim in-split of a Dyck automaton

A trim Dyck state-splitting of the state 1 into 1′ and 1”.
Edges (pi , a, r) which are not essential in (A′,M ′) are removed from E ′.
Matched pairs (q, a, r), (pi , b, t) or (pi , b, t), (q, a, r) which are not
essential are removed from M ′.

1

263

45

āb̄

ab

i

1′ 1′′

263

45

b̄ ā

ab

i i

Edge-Dyck shifts

A Dyck graph (G = (Q,E ⊂ Q × Q),M) is composed of a graph G,
where the edges E = (Ec ,Er ,Ei) are partitioned into three categories
(call edges, return edges, and internal edges).

An edge-Dyck shift X(G,M) is the set of admissible bi-infinite paths of a
Dyck graph.

Proposition

Each finite-type-Dyck shift is properly conjugate to a finite-type
edge-Dyck shift.

A decomposition theorem for edge-Dyck shifts

Theorem

Let (G ,M), (H,N) be two Dyck graphs such that X(G,M) and X(H,N)

are properly conjugate. Then there are finite sequences of Dyck graphs
(Gi ,Mi), (Hj ,Nj) and Dyck (or trim Dyck) in-splittings
Ψi : (Gi ,Mi)→ (Gi+1,Mi+1), ∆j : (Hj ,Nj)→ (Hj+1,Nj+1), such that
(G1,M1) = (G,M), (H1,N1) = (H,N), and (Gk ,Mk) = (Hk ′ ,Nk ′), up
to renaming of the states.

(G,M)
Ψ1−→ . . .

Ψk−−→ (Gk ,Mk) = (Hk ′ ,Nk ′)
∆k′←−− . . .

∆1←−− (H,N)

In-splittings commute but (unfortunately) not trim in-splittings.

Future work

Decidability properties

Characterization of deterministic sofic-Dyck shifts

Minimal presentations

Synchronization properties : sofic-Dyck shifts are not
synchronized. Krieger and Matsumoto introduced the notion of
λ-synchronization which is weaker and suitable for Markov-Dyck
or Motzkin shifts. Which sofic-Dyck shifts are λ-synchronized ? For
instance sofic-Dyck shift accepted by a Dyck-automaton which is
strongly connected by well-matched words are λ-synchronized.

λ-graphs for λ-synchronized sofic-Dyck shifts.

Characterization of flow equivalence : proper conjugacy +
internal-symbol expansion.

Preprints

M.-P. Béal, M. Blockelet, and C. Dima, “Sofic-Dyck shifts,”
CoRR, vol. http ://arxiv.org/1305.7413, 2013.

——, “Finite-type-Dyck shifts,” CoRR, vol.
http ://arxiv.org/1311.4223, 2013.

M.-P. Béal, M. Blockelet, and C. Dima, “Zeta functions of
finite-type-Dyck shifts are N-algebraic”, ITA 2014.

